Beyond Classical: D-Wave First to Demonstrate Quantum Supremacy on Useful, Real-World Problem
Beyond Classical: D-Wave First to Demonstrate Quantum Supremacy on Useful, Real-World Problem
D-Wave Quantum Inc.(“D-Wave” or the “Company”), a leader in quantum computing systems, software, and services and the world’s first commercial supplier of quantum computers, today announced a scientific breakthrough published in the esteemed journal Science, confirming that its annealing quantum computer outperformed one of the world’s most powerful classical supercomputers in solving complex magnetic materials simulation problems with relevance to materials discovery. The new landmark peer-reviewed paper, “Beyond-Classical Computation in Quantum Simulation,” validates this achievement as the world’s first and only demonstration of quantum computational supremacy on a useful problem.
Maximal Entanglement Sheds New Light on Particle Creation
Maximal Entanglement Sheds New Light on Particle Creation
Physicists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Stony Brook University (SBU) have shown that particles produced in collimated sprays called jets retain information about their origins in subatomic particle smashups. The study was recently published as an Editor’s Suggestion in the journal Physical Review Letters.
Observed in Florence the First “Quantum Rain”
Observed in Florence the First “Quantum Rain”
In the Quantum Mixtures Lab of the National Institute of Optics (Cnr-Ino), a team of researchers from Cnr, the University of Florence and the European Laboratory for Non-linear Spectroscopy (LENS) observed the phenomenon of capillary instability in an unconventional liquid: an ultradilute quantum gas. This result has important implications for the understanding and manipulation of new forms of matter. The research, published in Physical Review Letters, also involved researchers from the Universities of Bologna, Padua, and the Basque Country (UPV/EHU).
Hot Schrödinger Cat States Created
Hot Schrödinger Cat States Created
Quantum states can only be prepared and observed under highly controlled conditions. A research team from Innsbruck, Austria, has now succeeded in creating so-called hot Schrödinger cat states in a superconducting microwave resonator. The study, recently published in Science Advances, shows that quantum phenomena can also be observed and used in less perfect, warmer conditions.
Howard University Physicist Revisits the Computational Limits of Life and Schrödinger’s Essential Question in the Era of Quantum Computing
Howard University Physicist Revisits the Computational Limits of Life and Schrödinger’s Essential Question in the Era of Quantum Computing
Philip Kurian, a theoretical physicist and founding director of the Quantum Biology Laboratory (QBL) at Howard University in Washington, D.C., has used the laws of quantum mechanics, which Schrödinger postulated, and the QBL’s discovery of cytoskeletal filaments exhibiting quantum optical features, to set a drastically revised upper bound on the computational capacity of carbon-based life in the entire history of Earth. Published in Science Advances, Kurian’s latest work conjectures a relationship between this information-processing limit and that of all matter in the observable universe.
Quantum Computing: Achieving a Breakthrough by Pooling Our Expertise
Quantum Computing: Achieving a Breakthrough by Pooling Our Expertise
Fraunhofer IAO, Fraunhofer IPA and the IAT of the University of Stuttgart are pooling their research expertise to set up the cross-institute Fraunhofer Lab “flaQship”. The lab focuses on applied quantum computing in Stuttgart and Heilbronn.
Quantum Heat Dynamics Toggled by Magnetic Fields
Quantum Heat Dynamics Toggled by Magnetic Fields
The ability to conduct heat is one of the most fundamental properties of matter, crucial for engineering applications. Scientists know well how conventional materials, such as metals and insulators, conduct heat. However, things are not as straightforward under extreme conditions such as temperatures close to absolute zero combined with strong magnetic fields, where strange quantum effects begin to dominate. This is particularly true in the realm of quantum materials. Researchers from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), University of Bonn, and Centre national de la recherche scientifique (CNRS) now exposed the semimetal zirconium pentatelluride (ZrTe5) to high magnetic fields and very low temperatures. They found dramatically enhanced heat oscillations caused by a novel mechanism. This finding challenges the widely held belief that magnetic quantum oscillations should not be detectable in the heat transport of semimetals, as the scientists report in the journal PNAS.
Rare Quantum Effect Paves the Way for Topological Quantum Computing
Rare Quantum Effect Paves the Way for Topological Quantum Computing
Scientists at the Universities of Basel and Cologne have revealed a key superconducting effect in topological insulator nanowires. Their findings bring topological insulator nanowires closer to serving as the foundation for stable, next-generation quantum bits (qubits).
New Fabrication Method Brings Topological Quantum Computing a Step Closer to Reality
New Fabrication Method Brings Topological Quantum Computing a Step Closer to Reality
Physicists at the University of Cologne have taken an important step forward in the pursuit of topological quantum computing by demonstrating the first-ever observation of Crossed Andreev Reflection (CAR) in topological insulator (TI) nanowires. This finding, published under the title ‘Long-range crossed Andreev reflection in topological insulator nanowires proximitized by a superconductor’ in Nature Physics, deepens our understanding of superconducting effects in these materials, which is essential for realizing robust quantum bits (qubits) based on Majorana zero-modes in the TI platform — a major goal of the Cluster of Excellence ‘Matter and Light for Quantum Computing’ (ML4Q).
Quantum Spin Model Made From Nanographene Molecules
Quantum Spin Model Made From Nanographene Molecules
Empa researchers from the nanotech@surfaces laboratory have experimentally recreated another fundamental theoretical model from quantum physics, which goes back to the Nobel Prize laureate Werner Heisenberg. The basis for the successful experiment was a kind of “quantum Lego” made of tiny carbon molecules known as nanographenes. This synthetic bottom-up approach enables versatile experimental research into quantum technologies, which could one day help drive breakthroughs in the field.