Record Cold Quantum Refrigerator Paves Way for Reliable Quantum Computers

Record Cold Quantum Refrigerator Paves Way for Reliable Quantum Computers

January 9, 2025
Quantum computers require extreme cooling to perform reliable calculations. One of the challenges preventing quantum computers from entering society is the difficulty of freezing the qubits to temperatures close to absolute zero. Now, researchers at Chalmers University of Technology, Sweden, and the University of Maryland, USA, have engineered a new type of refrigerator that can autonomously cool superconducting qubits to record low temperatures, paving the way for more reliable quantum computation.

IonQ to Advance Hybrid Quantum Computing With New Chemistry Application and NVIDIA CUDA-Q

IonQ to Advance Hybrid Quantum Computing With New Chemistry Application and NVIDIA CUDA-Q

November 19, 2024
IonQ, a leader in the quantum computing and networking industry, announced today the completion of an industry-first demonstration of an end-to-end application workflow that leverages the NVIDIA CUDA-Q platform alongside IonQ’s leading quantum computing hardware.

New Design Packs Two Qubits Into One Superconducting Junction

New Design Packs Two Qubits Into One Superconducting Junction

October 25, 2024
In an article published September 23, 2024 in the journal Physical Review A, JQI researchers proposed a way to use the physics of superconducting junctions to let each function as more than one qubit. They also outlined a method to use the new qubit design in quantum simulations. While these proposed qubits might not immediately replace their more established peers, they illustrate the rich variety of quantum physics that remains to be explored and harnessed in the field.

Attosecond Core-Level Spectroscopy Reveals Real-Time Molecular Dynamics

Attosecond Core-Level Spectroscopy Reveals Real-Time Molecular Dynamics

May 7, 2024
A team of European researchers has developed an attosecond core-level spectroscopy technique that can track the many-body molecular dynamics on its natural ultrafast timescale. Their work was benchmarked with furan, showing the power of their tool by successfully retrieving the entire history evolution of the dynamics and relaxation processes of a heterocyclic organic ring.

An Elegant Method for the Detection of Single Spins Using Photovoltage

An Elegant Method for the Detection of Single Spins Using Photovoltage

April 16, 2025
Diamonds with certain optically active defects can be used as highly sensitive sensors or qubits for quantum computers, where the quantum information is stored in the electron spin state of these colour centres. However, the spin states have to be read out optically, which is often experimentally complex. Now, a team at HZB has developed an elegant method using a photo voltage to detect the individual and local spin states of these defects. This could lead to a much more compact design of quantum sensors.

Observed in Florence the First “Quantum Rain”

Observed in Florence the First “Quantum Rain”

April 10, 2025
In the Quantum Mixtures Lab of the National Institute of Optics (Cnr-Ino), a team of researchers from Cnr, the University of Florence and the European Laboratory for Non-linear Spectroscopy (LENS) observed the phenomenon of capillary instability in an unconventional liquid: an ultradilute quantum gas. This result has important implications for the understanding and manipulation of new forms of matter. The research, published in Physical Review Letters, also involved researchers from the Universities of Bologna, Padua, and the Basque Country (UPV/EHU).

New Insight Into Unique Kagome Superconductors That Could Advance Applications of Quantum Materials

New Insight Into Unique Kagome Superconductors That Could Advance Applications of Quantum Materials

April 9, 2025
The scientific community has faced a significant challenge in understanding what drives the complex behaviors, particularly the superconductivity of kagome materials. New research led by Zhenglu Li, assistant professor of materials science at the USC Viterbi School of Engineering, uses a computational approach to unlock the mystery of kagome superconductors, offering unique insights into the way electrons interact with the lattice dynamics.

Digital Quantum Magnetism at the Frontier of Classical Simulations

Digital Quantum Magnetism at the Frontier of Classical Simulations

March 30, 2025
Fermioniq is honoured to have been part of a collaboration led by Quantinuum – together with TUM, MCQST, Caltech and EPFL – which demonstrated the capabilities of Quantinuum’s H2 quantum computer for simulating quantum magnetism at the limit of classical methods. This work is an important step on the path towards achieving quantum advantage for a task of practical utility.

Quantum Simulation With Interacting Ultracold Atoms: Recent Progress and Future Perspectives

Quantum Simulation With Interacting Ultracold Atoms: Recent Progress and Future Perspectives

March 30, 2025
Now, a joint collaboration between the Indian Institute of Technology Indore, the Institute for Condensed Matter Physics and Complex Systems (Politecnico de Torino), the Institute for Quantum Optics and Quantum Information (Innsbruck), the University of Innsbruck, the Institute of Theoretical Physics (Jagiellonian University), the Mark Kac Center for Complex Systems Research (Jagiellonian University), and ICFO and ICREA Prof. Dr. Maciej Lewenstein, has provided an updated review, published in Reports on Progress in Physics. In this work, they have collected some of the most recent and exciting results on the investigation of non-standard Bose-Hubbard models, focusing on their application for atomic quantum simulators.
Subscribe to Dynamics