IonQ Reaches Important Milestone in Achieving Faster Quantum Gates for Quantum Computing and Networking

Technology / Press Release March 9, 2025

COLLEGE PARK, MD - March 5, 2025 - IonQ, a leader in the quantum computing and networking industries, today announced a significant milestone in the development of high-speed, mixed-species quantum logic gates for trapped-ion quantum computing and networking. The findings further the company’s momentum in driving scalable, high-fidelity quantum networking and distributed quantum computing. Detailed in a new paper written by IonQ scientists and co-authored with Australian National University, the research shows a novel approach to achieving an orders-of-magnitude increase in physical gate speed of two-qubit gates between different atomic species.

“Quantum gate speed is critical for quantum computing at scale, and this work is expected to enable IonQ to bring quantum computing to the market faster to help our customers solve problems not possible with current technology,” said Dean Kassmann, SVP of Engineering and Technology at IonQ. “Developing high-speed, high-fidelity mixed-species gates with fewer errors is essential for building large-scale quantum networks. This research not only drives faster and more efficient entanglement but also lays the foundation for delivering scalable, fault-tolerant quantum computing.”

IonQ’s research demonstrates a practical method for executing high-speed, mixed-species entangling operations, a key step in linking computational qubits across separate quantum processing nodes via photonic connections. The research introduces an industry-first approach using ultrafast state-dependent kicks (SDKs) from nanosecond laser pulses, expected to enable quantum logic gates to operate at much faster megahertz (MHz) speeds. By enabling fast, high-fidelity interactions between different qubit types, this advancement improves quantum information transfer, reduces noise and errors, and enhances network accuracy. The increased gate speed and computational efficiency support deeper circuits, more effective qubit use, and higher system throughput, bringing quantum computing closer to practical scalability and real-world applications.

Mixed-species gates refer to quantum operations between ions of different atomic elements or isotopes such as Barium and Ytterbium. Species are chosen strategically to enable optimal interaction between qubits. For example, some can offer longer coherence times, making them ideal for memory, while others can interact efficiently with photons, improving performance for networking applications. Effectively integrating different species can optimize quantum architectures for scalability, reliability, improved fidelity, and efficient entanglement distribution.

“In addition to being an important milestone for quantum computing, achieving high-speed mixed-species quantum gates is also a crucial step toward scalable and modular quantum networks,” said Dr. Ricardo Viteri, Staff Physicist at IonQ. “This research paves the way for architectures that can more efficiently interconnect and process information.”

IonQ has filed for patent protection on the underlying invention. Forthcoming experimental work will determine when and how these techniques may be incorporated into IonQ’s commercial systems.